Haarfarbe - TYR (Color/ Albino)

Assoziiertes Gen: TYR (Tyrosinase)

Chromosom: OCU1

Vererbung: monogen; $A > a^{chi} > a^d > a^m > a^n > a$

Tabelle 1: Bekannte Varianten des TYR

deutsch	Variante/ Mutation(en)		F		
	DNA	Protein	Funktion/ Mechanismus	Phänotyp	Rassen
A (<i>C</i>)	Wildtyp	Enzym bestehend aus 530 Aminosäuren ¹⁾	Schlüsselenzym in der Melanin-Synthese; in den Melanozyten exprimiert	Normale Farbausprägung, dunkle Augen	
a ^{chi} (<i>c^{chd}</i>)*	c.881A>G und c.1073C>T ²⁾³⁾	p.E294G und p.T358I, zentral gelegen zwischen der CuA- und der CuB-Bindungsregion des TYR-Enzyms ⁴⁾⁵⁾	Eumelanin unbeeinflusst, Phäomelanin stark reduziert	Chinchillafarbig dunkel, dunkle Augen	Chinchilla (Österreich ⁶⁾ / ANCI, Italien ⁷⁾)
a ^d (<i>c^{chm}</i>)*			Eumelanin reduziert, Phäomelanin vollständig reduziert	Chinchillafarbig mittel (sepiafarbig; temperatursensitive Ausprägung), rötlich-schwarze Augen	
a ^m (<i>c^{chl}</i>)*		(R422Q ⁸⁾ ?)	Eumelanin weiter reduziert	Marderfarbig (chinchillafarbig hell/ sepiafarbig; temperatursensitive Ausprägung), rötliche Augen; Typmarder: am/an oder am/a	

Symbol	Variante/ Mutation(en)		Eunktion/		
deutsch (englisch)	DNA	Protein	Funktion/ Mechanismus	Phänotyp	Rassen
a ⁿ (<i>c</i> ^h)	c.881A>G ⁹⁾¹⁰⁾	p.E294G, zentral gelegen zwischen der CuA- und der CuB-Bindungsregion des TYR-Enzyms ¹¹⁾¹²⁾	TYR-Enzym in warmen Körperregionen inaktiv, keine Phäomelanin-Synthese	Russenfarbig, d.h. ausschließliche Pigmentierung der Extremitäten (stark temperatursensitive Ausprägung), rötliche/ rosarote Augen; zur variablen Ausprägung der Russenfarbe können zusätzliche Variation am TYR-Lokus oder epistatische Wechselwirkungen beitragen ¹³⁾	Kalifornier (Österreich ¹⁴⁾ / ANCI, Italien ¹⁵⁾ / INRA, Frankreich ¹⁶⁾)
a (<i>c</i>)	c.1118C>A ¹⁷⁾¹⁸⁾	p.T373K, in der CuB-Bindungsregion des TYR-Enzyms ¹⁹⁾²⁰⁾	Vollständiger Funktionsverlust des TYR-Enzyms, keine Melanin-Synthese	Albino, rötliche/ rosarote Augen (Okulokutaner Albinismus, d.h. Haut, Haare und Augen betreffend)	Weiße Neuseeländer (Österreich ²¹⁾ / ANCI, Italien ²²⁾)

^{*:} Bisher wurde nur ein Chinchilla-Allel molekulargenetisch identifiziert, und es ist noch unklar, wie dieses mit den drei Chinchilla-Allelen (c^{chd} , c^{chm} , c^{chl}), die von Robinson, 1958²³(S. 238) beschrieben wurden, zusammenhängt.

Geschichte

Erste Berichte über das Vorkommen weißer Kaninchen stammen aus dem 16. Jahrhundert.²⁴⁾(S. 89) Auch das titelgebende Kaninchen in Tiziano Vecellios Gemälde "Madonna mit dem Kaninchen" aus dem Jahr 1530 hat weißes Fellhaar.

Neben Silberkaninchen und Albinos wurden um 1850 auch Russenfarbige der damaligen Rasse "Pelzkaninchen" zugeordnet.²⁵⁾(S. 106)

Charles Darwin führte die Entstehung der "Himalaya-Rasse (zuweilen auch Chinesische oder Polnische oder Russische genannt)" auf das Jahr 1857 zurück. Demnach sollen Russenfarbige aus hellen Silberfarbigen (die er auch als "Chinchillas" bezeichnete) hervorgegangen sein. (Darwin, 1868 ²⁶⁾, S. 108-110; mit Verweis auf: Proc. Zool. Soc. Juni 1857, p. 159; Cottage Gardener. 1857, p. 141.; ²⁷⁾, S. 28, 37)

"Die Rasse [Russenkaninchen] ist erstmalig von Mr. A. D. Bartlett 1857 beschrieben worden. Der Veröffentlichung ist laut Wischer in "Proceedings of the Zoological Society of London" (Part. 25, 1857, p. 159-160) eine farbige Lithographie mit zwei Alttieren und drei noch weißen Jungtieren beigefügt: Es heißt in der Beschreibung des Lepus nigripes oder "Blackfooted rabbit", daß das Kaninchen kleiner, kürzer und kompakter sei als das gewöhnliche Hauskaninchen. Der Russe ist nur ein Teilalbino mit rotdurchleuchtenden Augen. Als Teilalbino hat er aber farbige "Gipfel". Weiter zeigt er die Merkwürdigkeit unter Einwirkung von Kälte an farblosen Kahlstellen Pigment zu entwickeln." (Wischer, M. 1941. Praktische Kaninchenzucht von Paul Starke. Zwölfte Auflage. Leipzig: Dr. F. Poppe. ²⁸⁾, S. 211)

http://www.wikikanin.de/ Printed on 2025/10/18 19:38

Chinchillafarbige Kaninchen wurden ab der zweiten Hälfte des 19. Jahrhunderts bekannt und 1913 in Frankreich erstmals ausgestellt.²⁹⁾(S. 82)

Marderfarbige Kaninchen wurden ab den 1920er Jahren in verschiedenen Ländern, wie Frankreich, Deutschland, England oder Amerika, unter den Nachkommen von Chinchillafarbigen beobachtet und weitergezüchtet.³⁰⁾(S. 174)³¹⁾(S. 116)³²⁾

Siehe auch: Kaninchenrassen.

Zur Vererbung

In seinem Brief an C. Wren vom 16. Juli 1683 zeigte A. van Leeuwenhoek, dass er sich der Dominanz der Wildfarbigkeit (A/_, G/_) gegenüber Albinismus (a/a) sowie Nicht-Wildfarbigkeit (g/g) durchaus schon bewusst war: "In order to cause these white rabbits to have grey young, [...] they mate a grey buck with the white does. This grey buck [...] is mated not only with white, but also with piebald, bleu and black does, and all the young issuing from this, take their father's grey colour; and, indeed, it has never been seen that any such young rabbit had a single white hair or any other hair than grey."³³⁾(S. 69-71)

Aber erst nach der Wiederentdeckung der Mendelschen Vererbungsregeln um 1900 wurde dieses Wissen zielgerichtet genutzt. So berichtete der Genetiker W. E. Castle (1903)³⁴⁾ im Rahmen von ersten, klassischen Zuchtexperimenten über einen rezessiven Vererbungsmodus des Albinismus: "During the last few months I have been able to demonstrate experimentally that albinism is a recessive character in rabbits."

Dominanzverhalten und Pigment-Ausprägung

Tabelle 2: Dominanzverhalten zwischen Allelen des A-Lokus und Pigment-Ausprägung für die verschiedenen Kombinationen – nach Robinson, 1958³⁵⁾(S. 239; ausgehend von Sawin 1932, Kosswig 1927 und Nachtsheim 1929); angepasst gemäß Fontanesi, 2021³⁶⁾(S. 90)

Genotyp	Eumelanin-Level	Phäomelanin-Level	Farbe Pupille	Farbe Iris	Fellhaarfarbe
A/_	++++	+++	Sehr dunkel/ schwarz	Braun	Vollpigmentiert
a ^{chi} /a ^{chi} , a ^{chi} /a ⁿ , a ^{chi} /a	++++	+ (Rückenlinie)	Sehr dunkel/ schwarz	Blau durchwachsen	Chinchillafarbig
a ^{chi} /a ^d , a ^{chi} /a ^m	++++	+ (Rückenlinie)	Sehr dunkel/ schwarz	Braun	Chinchillafarbig
a ^d /a ^d , a ^d /a ^m	+++ (Leicht sepia)	Nicht vorhanden	Rötlich-schwarz	Braun	(Dunkel-marderfarbig?)
a ^d /a ⁿ , a ^d /a, a ^m /a ^m	++ (Sepia)	Nicht vorhanden	Rot	Braun	Dunkel-marderfarbig
a ^m /a ⁿ , a ^m /a	++ (Blass sepia)	Nicht vorhanden	Rot	Braun	Typ-marderfarbig
a ⁿ /a ⁿ , a ⁿ /a	++ (Extremitäten)	Nicht vorhanden	Pink	Weiß	Russenfarbig
a/a	Nicht vorhanden	Nicht vorhanden	Pink	Weiß	Weiß

Last update: 2025/08/24 16:37

Weitere Formen des Albinismus

- Magnussen (1952, 1954) berichtete über eine Mutation (*red-eye, re*), die bei Homozygotie zu einer stark verringerten und verzögerten Pigmentbildung im Auge (rote Pupillen, milchig-blaue Iris bei adulten Tieren), sowie aufgehelltem Nackenhaar führte, und die unabhängig von Albino-, Agouti- und Vienna-White-Loki vererbt wurde.³⁷⁾(S. 252-253)³⁸⁾(S. 14)
- Lutino (gehemmte Eumelanin-Synthese; beobachtet und weitergezüchtet in Dänemark, 1985)

Gesundheitliche Bedeutung des Albinismus

Okulokutaner Albinismus resultiert bei Säugetieren neben einer gestörten Pigmentierung von Haut, Haaren und Augen in einer veränderten Organisation des visuellen Systems. Aus verschiedenen Albino-Tiermodellen sind eine verringerte Stäbchenzahl, eine unterentwickelte zentrale Netzhaut oder fehlgeleitete Sehnervenfasern bekannt.

Nervenfasern, die Sehinformation aus der Netzhaut an bestimmte Areale des Gehirns vermitteln, werden auch als Sehbahn bezeichnet. Sanderson, 1975³⁹⁾ stellte bei Kaninchen mit fehlendem Netzhaut-Melanin (5x russenfarbig, 2x Albino) Abnormalitäten der Sehbahn fest. Zum Vergleich wurden wild- (5x) und chinchillafarbige (4x) Tiere – mit normal ausgeprägter Sehbahn – herangezogen.

Collewijn *et al.*, 1978⁴⁰⁾ beschrieben eine Störung des okulomotorischen, d.h. die Augenbewegung betreffenden, Systems, bzw. einen horizontalen Nystagmus bei Albinos (5x *New Zealand White*, 4x "*Polish" albino*), deren Gesichtsfeld künstlich eingeschränkt oder zusätzlich visuellen Bewegungssignalen ausgesetzt wurde. Diese Auffälligkeit sei möglicherweise erklärbar durch Veränderungen der Sehbahn. Abschließend wurde angemerkt, dass die Auswirkungen einer veränderten Sehbahn auf die okulomotorische Kontrolle bei anderen Arten, wie Katzen oder Menschen, weitreichender sein könnten.

Jeffery *et al.*, 1997⁴¹⁾ wiesen bei albinotischen ZIKA-Kaninchen (3x) eine deutlich reduzierte Ganglienzelldichte im Bereich des horizontalen retinalen Sehstreifens nach, während bei transgenen (funktionelles Maus-Tyrosinase-Gen), pigmentierten ZIKA-Kaninchen (3x) eine normale Zelldichte beobachtet wurde.

Donatien *et al.*, 2002⁴²⁾ konnten keinen einfachen Zusammenhang zwischen dem Pigmentierungsgrad und der Ganglienzelldichte im Bereich des retinalen Sehstreifens feststellen (verwendet wurden Holländer, Champagne Argenté, Deutsche Riesen, Weiße Wiener, Zika und Weiße Neuseeländer).

Phänotypen (Beispiele)

http://www.wikikanin.de/ Printed on 2025/10/18 19:38

Chinchillafarbig Abb. 1: Zwergwidder chinchillafarbig-weiß (achi_Kk) ©KH Schwarzgrannenfarbig Abb. 2: Zwergwidder schwarzgrannenfarbig (achi_bb) ©KH Abb. 3: Zwergwidder siamesenfarbig gelb Marder-/ Siamesenfarbig (amanbbgg) ©KH

Abb. 4: Siamesen blau (amanbbddgg)

©KH

Abb. 5: Russen schwarz-weiß (an_gg) ดหม

Russenfarbig

Abb. 6: Kalifornier blau-weiß (an ddgg) ©KH

Albino/ weiß Rotauge (RA)

Abb. 7: Riesen weiß RA (aa), Jungtiere ©KH

4 6 792

```
1) 2) 4) 6) 9) 11) 14) 17) 19) 21)
```

Aigner, B., Besenfelder, U., Müller, M., & Brem, G. 2000. Tyrosinase gene variants in different rabbit strains. Mammalian Genome, 11(8).

```
3) 5) 7) 10) 12) 15) 18) 20) 22)
```

Utzeri, V. J., Ribani, A., Schiavo, G., & Fontanesi, L. 2021. Describing variability in the tyrosinase (TYR) gene, the albino coat colour locus, in domestic and wild European rabbits. Italian Journal of Animal Science, 20(1), 181-187.

8) 32

Peist, I., & Migdał, Ł. 2023. Sable rabbits - phenotypic characteristics and history of breeds development. Rocz. Nauk. Zoot., Vol. 50, no. 1.

13) 16)

Demars, J., Labrune, Y., Iannuccelli, N., Deshayes, A., Leroux, S., Gilbert, H., ... & Riquet, J. 2022. A genome-wide epistatic network underlies the molecular architecture of continuous color variation of body extremities. Genomics, 114(3), 110361.

23) 35) 37)

Robinson, R. 1958. Genetic studies of the rabbit. Bibl. Genet. 1958, 17, 229-558.

24) 25) 31)

http://www.wikikanin.de/ Printed on 2025/10/18 19:38

Nachtsheim, H., & Stengel, H. 1977. Vom Wildtier zum Haustier. 3. Auflage. Berlin, Hamburg: Paul Parey. ISBN 3-489- 60636-1.

26)

Darwin, C. 1868. The Variation of Animals and Plants under Domestication. Vol.1. London: John Murray, Albemarle Street.

27) 28)

Möbes, W. K. G. 1946. Bibliographie des Kaninchens nebst Anhang. I. Das Frettchen. II. Das Meerschweinchen. Bd. 1. Akademischer Verlag Halle.

29) , 30)

Joppich, F. 1969. Das Kaninchen. Vierte, ergänzte Auflage. Berlin: VEB Deutscher Landwirtschaftsverlag.

33)

Leeuwenhoek, A. van 1663. Alle de brieven. Deel 4: 1683-1684. N.V. Swets & Zeitlinger, Amsterdam 1952. Digitale Bibliotheek voor de Nederlandse Letteren.

34)

Castle, W. E. 1903. Note on Mr. Farabee's observations. Science, 17(419), 75-76.

36)

Fontanesi, L. 2021. Genetics and molecular genetics of coat colour in the European rabbit. In: The genetics and genomics of the rabbit (pp. 84-103). Wallingford UK: CABI. ISBN: 9 781 78064 3342.

Fox, R. R. 1994. Taxonomy and Genetics. In: Manning, P. J.; Ringler, D. H. & Newcomer, C. E. (Eds): The Biology of the Laboratory Rabbit. 2nd. Ed. San Diego: Academic Press. ISBN: 0124692354. S. 1-26.

39)

Sanderson, K. J. 1975. Retinogeniculate projections in the rabbits of the albino allelomorphic series. Journal of Comparative Neurology, 159(1), 15-27.

40)

Collewijn, H., Winterson, B. J., & Dubois, M. F. 1978. Optokinetic eye movements in albino rabbits: inversion in anterior visual field. Science, 199(4335), 1351-1353.

41)

Jeffery, G., Brem, G., & Montoliu, L. 1997. Correction of retinal abnormalities found in albinism by introduction of a functional tyrosinase gene in transgenic mice and rabbits. Developmental brain research, 99(1), 95-102.

42

Donatien, P., Aigner, B., & Jeffery, G. 2002. Variations in cell density in the ganglion cell layer of the retina as a function of ocular pigmentation. European Journal of Neuroscience, 15(10), 1597-1602.

From:

http://www.wikikanin.de/ - Wikikanin

Permanent link:

http://www.wikikanin.de/doku.php?id=genetik:haarfarbe tyr&rev=1756046255

Last update: 2025/08/24 16:37

